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QUASICONFORMAL AND AFFINE GROUPS

GAVEN J. MARTIN

Introduction

Suppose that G is a discrete abelian group of diffeomorphisms acting on
the unit sphere S of R®*!. The main result of this paper is that if G
has uniformly bounded distortion and an element of infinite order, then G
is conjugate, by a self-homeomorphism of 8™ with bounded distortion, to a
conformal group T' of S™ (that is, I' is a subgroup of the Maobius group).
Actually, the restriction to abelian groups will be weakened to a class of
admissible groups which will be defined by a simple algebraic condition (see
§4). For instance, groups with an infinite cyclic central subgroup will be
admissible; such groups can of course contain free groups of any rank. We
will give a simple geometric condition on a subgroup of the euclidean group
to be admissible. In [11], we showed that such a conjugacy exists in the case
G is cocompact and isomorphic to a crystallographic group. Combining this
with the results herein gives a wide class of abstract subgroups of the euclidean
group for which any discrete and faithful representation in the diffeomorphism
group of 8” with bounded distortion is conjugate into the euclidean group by
a homeomorphism with bounded distortion.

We will provide a number of references from the recent literature to show
how our results fit in with those obtained earlier. For instance, we recall from
[11] that there is a uniformly quasiconformal group acting smoothly on R” and
isomorphic to a free abelian group of rank n — 1 which is not quasiconformally
conjugate to a-euclidean group. Evidently it cannot be made smooth at
infinity.

In order to study discrete groups of bounded distortion one is, of course,
naturally led to the notion of a discrete quasiconformal group. For the basic
facts regarding quasiconformal mappings we refer to Viisild’s book, [18] and
for the theory of discrete quasiconformal groups we refer to the articles by
Gehring and Martin [4] and Tukia [17].
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Our methods and ideas rest heavily on Tukia’s work [17] on the conjugacy
of certain uniformly quasiconformal groups to conformal groups using Sul-
livan’s idea of measurable invariant conformal structures for quasiconformal
groups (see also [14] and [7]). We make the easy but important observation
that if every element of a uniformly quasiconformal group has constant matrix
dilatation, then the averaged dilatation, which produces the invariant confor-
mal structure, will also be constant and so can be realized as the pullback
of the standard conformal structure via a linear mapping. This implies the
following rigidity theorem in the affine group: a uniformly quasiconformal
subgroup of the affine group is conjugate, via a linear mapping, to a confor-
mal subgroup of the affine group. In particular this implies the well-known
result that a finite or compact subgroup of GL(n, R) is linearly conjugate to
a subgroup of the orthogonal group.

As an interesting consequence we will see that the properly discontinuous,
fixed point free, affine action on R3 which is isomorphic to a free group on
two generators, constructed by Margulis as a counterexample to a conjecture
of Milnor (that such groups are virtually polycyclic) cannot have bounded
distortion (see [10]). Indeed, it follows from our results that Milnor’s conjec-
ture is true if one assumes bounded distortion (for this will imply the group
is virtually abelian). This last fact partially motivated our investigation.

Next, we will be able to show that the parabolic and loxodromic elements of
a uniformly quasiconformal group are quasiconformally conjugate to Mébius
transformations under some restrictions, for instance if the mapping is differ-
entiable at a fixed point. We will also get good bounds on the dilatation of the
conjugating mapping depending only on the dilatation of the corresponding
cyclic group.

It had been previously observed that in dimensions n # 4, 5 the loxodromic
elements of a uniformly quasiconformal group are topologically conjugate to
Moébius transformations. This depends on the solution of the annulus conjec-
ture and on certain results about fibering manifolds over the circle (see [4] and
the references therein). Freedman’s recent affirmative solution of the annulus
conjecture in dimension 4 and 5 probably implies the result in these dimen-
sions as well. It then follows from Sullivan’s proof of the Hauptvermutung for
quasiconformal manifolds in dimension n # 4 that this topological conjugacy
can be made quasiconformal. However one cannot obtain any control on the
dilatation of the conjugating map using these rather sophisticated and deep
results. For parabolic transformations nothing was known except in dimen-
sion two, where the result is obvious from Sullivan’s and Tukia’s work (see [14]
and [17]). We regard our method of approach to this problem as significantly
less complicated, obtaining stronger results though in a less general setting.
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1. Notation, definitions and an estimate

We denote by R" the one point compactification of euclidean n-space R™.
All notions of convergence will be taken with respect to the spherical metric
of R".

We will often times prefer to work in R" rather than the conformally
equivalent S™. Henceforth, we will assume that n is an integer which is at
least two. We point out that almost all of our results are true (with essentially
the same proofs) when n = 1, however there are complications due to the fact
that there is no good definition of a pointwise dilatation in dimension one.

Whenever we claim an equation holds almost everywhere on R™, we mean
almost everywhere with respect to n-dimension Lebesgue measure. In the the-
ory of quasiconformal mappings, one is usually concerned with only equations
defined and valid on sets of full measure.

We define the space S(n) = SL(n,R)/SO(n). Thus S(n) is the space of
real, symmetric, positive definite n x n matrices with determinant equal to
one. The general linear group GL(n, R) acts transitively on the right of S(n)
via the rule

X[A] = |det X|"¥"X*AX, X €GL(n,R), A€ S(n).
The Riemannian metric
ds? = L\/ntr(Y "1 dY)?

on S(n) gives rise to a metric distance which we denote by d(A, B) for A, B €
S(n). This metric is invariant under the right action of GL(n,R) and makes
S(n) a globally symmetric Riemannian manifold, which is complete, simply
connected, and of nonpositive sectional curvature (see [8]). (We include the
factor -;-\/E so that when n = 2 we obtain the usual hyperbolic space of

constant curvature equal to —1.) We denote by Id the usual n x n identity
matrix; then

d(A) = d(Id,A) = %\/r_z((ln /\1)2 + (ln /\2)2 R (ln /\n)2)1/2’

where Aj, Ag, -+, A, are the eigenvalues of A (see [9]). Other distances can
now be calculated from the transitivity of the GL(n,R) action.

The matriz dilatation of a homeomorphism f of ﬁn, which is differen-
tiable with nonzero Jacobian matrix almost everywhere, is the measurable
map jif: R" — S(n) defined by

(1.1) py(z) = | det f(2)|¥" f(2) f'(2) = f'(2)[1d],

where f'(z) is the Jacobian matrix of f.
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A conformal structure on R is a pair (R, ), where u: R" — S(n) is a
measurable mapping for which

esssup{d(u(z)): z € R"} = d() < oo.

We define D(p) = exp(d(u)) and call this the dilatation of u. The standard
conformal structure is f(z) = Id. One should think of a conformal structure as
a measurable ellipse field on the tangent space of R ', such that the eccentricity
of the ellipses is uniformly bounded. A homeomorphism of R" viewed as a
mapping between two conformal structures u; and o,

f: (ﬁnvﬂl) - (En>ﬂ2)a
is called D(u1, u2)-quasiconformal if

(1) fe W,%Joc(_R.n), i.e.f has locally L™ integrable first derivatives,
(2) D(f, 1, p2) = esssup{exp(d(us (2), f' () u2(f(2))]): 2 € R} < co.

If p1 = pe = f, the standard structure, we obtain the usual notion of qua-
siconformality and if no conformal structures are present we mean quasicon-
formal in this usual sense. In this case the quantity exp(d(f'(z)[Id])) is often
referred to as the Ahlfors-Earle dilatation of a quasiconformal mapping at a
point z (see [1]). Following Tukia, we will call the essential supremum of the
above quantity over R” the D-dilatation of f and we will denote this quantity
D(f). Notice that by definition D(f) = D(uy).
We say that f is conformal if D(f) = 1, that is,

p1{z) = f'(x)[u2(f(z))] almost everywhere in R™.

For the basic facts concerning quasiconformal structures, see [17, §D]. One
should notice that a mapping which is quasiconformal in one structure is
automatically quasiconformal in all other structures, however the dilatation
will vary from structure to structure. Furthermore, a map of R" which is
one-quasiconformal in the usual sense is conformal in the usual sense and so
a Mobius transformation.

The notion of D-dilatation is especially useful in our situation. The usual
notion (that is of our reference [18]) of K-quasiconformality of a homeomor-
phism f of R™ is

K (f) = ess sup{log(Amax(2)), log(1/Amin (2))}V/?,

where f satisfies (1) and (2), and Apax() and Apin(z) are the largest and
smallest eigenvalues of the matrix f'(z)*f'(z) = f'(z)[Id]. Thus we state here
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the following sharp relation between the D-dilatation and the K-dilatation
(see [17, (D5)].):
K(f), n even,

K(f)/vn—-1<D(f) < { K(f)/\/m n odd.

Notice the implication that K(f) = D(f) when n = 2.

1.2. Definition. A group G of homeomorphisms of R" is called a qua-
siconformal group if there is a finite K such that each element g of G is
K-quasiconformal. We denote by K(G) the infimum of such K. If each ¢ in
G is K-quasiconformal, then from (3) above {D(g): ¢ € G} is bounded and
we denote by D(G) the supremum of this set. Clearly the relation (3) is valid
between K(G) and D(G).

For a quasiconformal group G, a G-invariant conformal structure p on R™
is a conformal structure (I_i", u) such that each g in G is conformal as a map

=n
' M

g: R",p) » R", p).

We observe that if f is quasiconformal, then

f:®7pp) —» ®R",B) and f7: R",8) — ®R",uy)

are conformal. Hence if p is a G-invariant conformal structure and f is a
homeomorphism satisfying (1) and (2), and ps(z) = u(z) almost everywhere,
then the group f o G o f~! is a conformal group.

This is the basis for the proof that in two dimensions every uniformly qua-
siconformal group is quasiconformally conjugate to a conformal group. One
can always produce a G-invariant conformal structure u for a quasiconfor-
mal group and in dimension two the measurable Riemann mapping theorem
{or the existence theorem for quasiconformal mappings) ensures that one can
always find an f with puy = pu.

The existence of a G-invariant quasiconformal structure for a quasiconfor-
mal group @ is due to the GL(n, R) invariance of the metric distance d in
S(n) and the fact that S(n) is nonpositively curved. In fact if P(E) denotes
the center of the smallest ball containing a bounded subset E of S(n) (which
is well defined and unique since S(n) is nonpositively curved and simply con-
nected), then

u(z) = P({ng(z): g € G})
will be the desired G-invariant conformal structure (see [17, §§D and E]). Un-
fortunately, in higher dimensions (n > 3) there is no measurable Riemann

mapping theorem (and there cannot be). Thus we will have to use differ-
ent techniques to produce a conjugating mapping other than those suggested
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above for dimension two. However, we will need to produce invariant confor-
mal structures and in order to produce the good bounds on the dilatation of
the conjugating mapping that we claimed in the introduction it is necessary to
prove the following technical lemma. In our application M will be the space
S(n). Given a metric p on a manifold M we denote by B,(z,t) the closed
p-ball centered at z and of radius ¢.

1.3 Lemma. Let M be a simply connected, nonpositively curved Rieman-
nian manifold with complete metric p(z,y). Let x € M and suppose that E is
a subset of M containing & and such that sup{p(z,z): z € E} < 5. Let P(E)
denote the center of the smallest ball containing E in the metric p. Then

p(z, P(E)) < 8/V2,

and this estimate is sharp (irrespective of the curvature of M).

Proof. Let B,(y,r) be the unique smallest ball containing the set E and
suppose that B,(z,t) also contains E. Suppose that p(z,y) = t/v/2+c where
¢ > 0. Let w be the point on the geodesic segment from y to x such that
p(y,w) = ¢/2. Next let 2 € E and « be the angle formed by the geodesic
segments wz and wz. By the law of cosines we see that if o > #/2, then
p(z,w) < t//2 while if & < 7/2, then p(z,w) < r — &, for some 6§ > 0. Since
‘we might as well assume that E is compact, we find that there is a positive
§ such that E lies in the ball B,(w, max{t/v/2,r — 6}). This contradiction
establishes the first part of the lemma.

To see that the estimate of the lemma is in general best possible, it suffices
to observe that the value s//2 is actually attained in the euclidean case (for
instance if z is the vertex of a right isosceles triangle) and that the exponential
map Exp,: TxM — M is infinitesimally an isometry at the origin.

In the case of constant negative curvature equal to —1 (for instance in S(2))
one may use the formulas of hyperbolic trigonometry to prove the stronger
estimate that r = min{s/\/2, (s + log 2)/2} (see [15]).

The above lemma significantly improves the estimates of the dilatation of
the conjugating mapping in the theorems of [17] where the invariant conformal
structure is assumed to be approximately continuous (respectively continuous)
at a radial limit point (limit point) of the quasiconformal group . These
hypotheses are satisfied if, for instance, GG is a quasiconformal group of S™
which extends to a quasiconformal group of B"*! with B! /G compact. In
the addendum to that paper, Tukia shows that under these hypotheses there is
a quasiconformal mapping whose matrix dilatation is almost everywhere equal
to the invariant conformal structure constructed above. This fact, together
with our estimate (applied to the bounded subset {1,: g € G} of S(n) which
always contains the identity) implies that the dilatation of the constructed
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conjugating map f in Tukia’s Theorems G and H2 satisfies
d(us) < (1/V2)sup{d(uy): g € G},

and hence Tukia’s theorem holds with the following better bounds on the
conjugating map f:

log D(G) < 2log D(f) < (1/V'2)log D(G).

We have also established the following theorem.
1.4 Theorem. Let G be a quasiconformal group acting on an open sub-
domain of R™. Then there is a G-invariant conformal structure p such that

log D(G) < 2log D(u) < v/2log D(G).

The first inequality holds for all G-invariant conformal structures and is
sharp. The second inequality does not necessarily hold for all G-invariant
conformal structures but is probably sharp for the y that we construct. The
referee suggested the following outline indicating this: Recall from computa-
tional geometry that for all m there is a constant ¢,, such that if X lies in R™
and diam(X) < 1, then X lies in B™(z, c,,) for some z. Notice c; = /3 and
for all m, /2 < ¢ < /3 and ¢,y — \/§ as m — oo. PFor simplicity, suppose
S(n) is flat. Then for all m, there is an n and matrices Id, A1, Az, -, Am
of S(n) forming a regular m-simplex. If G is the cyclic group of order m
acting on the disjoint union of m copies of R™, such that at some point z the
invariant conformal structure is given by the average of the above matrices,
then calculations reveal that

log D(G(2)) = d(1d, A,),
log D(u(z)) = V/((m +1)? —m ~1)/(2(m +1)?)

where m = (n — 1){(n + 2)/2 = dim S(n). Now let n — oo and observe that
although S(n) is not flat, it is locally almost flat; also the disjoint union of
m copies of R” embeds in R”. This suggests that the estimate log D{(u) <
¢, ) D(G) is actually sharp.

Using (3) above, one can translate Theorem 1.4 into an estimate on K(f)
as compared to K{G). This sharpness of the lemma indicates that such an
estimate is best possible using these techniques; it would be interesting to
know whether these estimates on the dilatation of the conjugating mapping
are sharp. As suggested above, there is evidence for this.

Finally, note that we will apply the lemma to the space S(n) which as a
symmetric space has dimension (n — 1)(n + 2)/2 and rank n — 1. That is,
there are n — 1 dimensional flat subspaces. Hence the estimate of the lemma
will be best possible in the large for S(n), n > 3, and so one cannot hope to
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improve the general estimate for groups with large dilatation as one can in
dimension two where S(2) has rank one.

2. Quasiconformal and affine groups

2.1 Definitions and notation. We denote by A(n) = GL(n,R) x R"
the affine group of R™ (an element is a homeomorphism of the form Az + b,
where A € GL(n,R) and b € R™). Mob(n) will denote the group of all
conformal (or Mébius) transformations of R”. We can extend A(n) to act on
R" by agreeing that every element should fix co. The group of similarities of
R"™ is that subgroup of the Mébius group fixing oo; it is naturally isomorphic
to R - O(n) x R™, where O(n) is the orthogonal group (every element is a
homeomorphism of the form rOz + b, r € R — {0}, O € O(n) and b € R"™).

2.2 Theorem. Suppose that G is a quasiconformal group acting on a
subdomain of R™ and that for each g € G, pg 15 constant. Then G is conju-
gate to a conformal group by an affine mapping B whose D-dilatation D(B)
satisfies

log(D(G)) < 2log(D(B)) < vV21og(D(G)).

-Proof. The assumption is that yu, is independent of z for an element g of
G. So therefore is the (average) invariant conformal structure p defined as
above in §1. Thus u(z) = A € S(n). By the transitivity of the SL(n,R)
action, there is a B such that A = B[Id]. Then the group H = B"! oG o B
is conformal in the usual sense.

In view of the estimates of 1.2(3), we find the estimate

K'Y <K(f) < VIn—DKVV?

is also valid.

2.3 Remarks. Actually, the assumption that every element of a group G
of homeomorphisms of R" have constant matrix dilatation implies that either
G is a subgroup of the affine group or else G is a conformal group. One can
see this from a direct, but tedious, calculation or otherwise from the above
theorem G = Ao H o A~!, where H is a conformal group and A is linear. If
every element of H fixes infinity, then G is the affine conjugate of a similarity
group and so an affine group. Otherwise, there is an £ in H which does not
fix infinity. Let g = Ao ho A~! and notice that g(oo) # oo. Our assumption
is that ¢ has constant matrix dilatation. Now there is a conformal mapping
o such that o o g(co) = co. Since pog = 4 is constant, we see oo g = C,
where C is some affine transformation. Every conformal mapping which does
not, fix infinity can be written in the form ¢ o S, where S is a similarity and
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 is the usual inversion in the unit sphere. Equating the two expressions thus
obtained for g we find there is an affine mapping D such that Ao = po D.
This implies that D is linear, as A is, and that

Az = (|Dz|/|z|)®Dz for = # 0.

The left-hand side is smooth at z = 0, so therefore is the right-hand side.
This is impossible unless |Dz| = ajz| for some real positive constant a. Thus
D and hence A are conformal. So too then is the group G.

Furthermore, it is only necessary to assume that every element of G have
matrix dilatation which is almost everywhere, with respect to Lebesgue mea-
sure, the same constant matrix.

It is a rather unfortunate fact that a homeomorphism f of rR" may have
constant matrix dilatation while f~! does not. Indeed, the above argument
implies that if both f and f~! have constant matrix dilatation, then either f
fixes infinity and is affine or else f is conformal.

2.4 Corollary. Let G be a subgroup of the affine group. If d(G) =
sup{d(ug): g € G} is finite, then G is conjugate to a group of similarities by
a linear mapping B with

d(G)/2 < d(B) < d(G)/V2.

2.5 Corollary. Let G be a finite or compact subgroup of A(n) or
GL(n,R). Then there is a linear transformation A of GL(n,R) such that
AGA™! is contained in O(n) and

d(G)/2 < d(A) < d(G)/V2.

Proof. The map &: A(n) — S(n), defined by £(B) = BB, is clearly
continuous. So if G is finite or compact, then &(G) is finite or compact in
S(n) and so in particular d(G) is bounded.

As a consequence of the above corollaries, any uniformly quasiconformal
subgroup of A(n) which acts freely (without fixed points) on R™ is conjugate
to a subgroup of euclidean isometries via a linear mapping. In particular, if
a discrete quasiconformal subgroup G of A(n) acts freely and cocompactly
on R” (that is, R"/G is compact), then G is conjugate to a Bieberbach (or
crystallographic) group via a linear mapping. Consequently any free uniformly
quasiconformal subgroup G of A(n) is virtually abelian (that is, contains an
abelian subgroup of finite index).

Milnor conjectured (see {10]) that a fixed point free, discontinuous sub-
group of A(n) is virtually polycyclic (that is it contains a polycyclic subgroup
of finite index). Milnor’s conjecture is evidently true for uniformly quasi-
conformal subgroups of A(n). Thus any example such as that of Margulis
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[10] of a subgroup of the affine group which is fixed point free, properly dis-
continuous and isomorphic to a free group of rank two cannot be uniformly
quasiconformal.

We note here that the above results are well known in the case that the
group is a finite or compact subgroup of A(n) (for instance, a continuous
representation of a compact group in GL({n, R) is conjugate to an orthogonal
representation, actually amenability suffices; see [6]). However we do not
know whether such (or any) bounds on the norm of the conjugating linear
mapping have ever been found.

As an application of these methods we reformulate some of the above re-
sults. For a matrix A € GL(n,R) we set

A} = max{|Ah]|: |h| = 1}.

We say A is similar to B if there is a C in SL(n,R) such that A = C~1BC.
As corollaries to our earlier results we see
2.8 Corollary. Let F be a subgroup of GL(n,R). Suppose there is a
constant ¢ > 1 such that for each A in the group F

(2.7) A" < cdet A.

Then there is an element B of SL(n,R) with ||B|| < /(n — l)cl/ﬁ, such that
the group B~1F B lies in the similarity group R - O(n).

A linear operator is said to be power bounded if there is a constant ¢ such
that for every positive m,

(2.8) [A™] < e

2.9 Corollary. The matriz A is power bounded if and only if A is similar
to an orthogonal transformation.

We observe that in Corollary 2.9 the hypotheses imply that lim || A™||}/™ =
1, that is the spectral radius of A is one. Since det A = 1, all the eigenvalues
of A have modulus one. This alone, however, does not suffice to assert the
validity of the conclusion.

3. The infinite cyclic subgroups
of a smooth quasiconformal group

In [4] we show that every element of a quasiconformal group is either ellip-
tic, loxodromic or parabolic (see the definitions below). Due to the affirmative
solution of the Smith conjecture, it follows that every periodic diffeomorphism
of R", n <3, is smoothly conjugate to an orthogonal transformation if it has
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fixed points (see [13]). For n > 4, the failure of the generalized Smith Con-
jecture provides examples of smooth, periodic diffeomorphisms which are not
topologically conjugate to orthogonal transformations (the fixed point sets
can be made to be codimension two knotted spheres; see [5]). Such finite
groups of diffeomorphisms are examples of uniformly quasiconformal groups
which are not topologically conjugate to any conformal groups. We will show
here, however, that the elements of infinite order in a smooth discrete quasi-
conformal group are quasiconformally conjugate to Mobius transformations in
all dimensions. We do not know if the assumption of smoothness is necessary
(it is not for the loxodromic transformations when n # 4).

The argument providing the conjugacy is similar in both the parabolic and
loxodromic cases and we will need both cases to attack the general question
in §4.

We need some terminology in order to state the best results.

3.1 Definition. A self-homeomorphism f of R"™ is said to be affine at
infinity if f is differentiable almost everywhere and there is a matrix A of
S(n) such that '

(3.2) d(ps(z),A) -0 asz — oo,

where d is the metric of S(n) as defined above in §1 (notice that d generates
the usual topology of S(n) as a space of matrices). We will say that f is
conformal at infinity if A is the identity.

Affine mappings will naturally be affine at infinity. However, of course,
affine maps need not be differentiable at infinity.

3.3 Lemma. If f is continuously differentiable at infinity with nonzero
Jacobian, then f is affine at infinity.

Proof. As above we will continue to denote the usual inversion in the unit
sphere by ¢. The hypothesis that f is continuously differentiable at infinity
with nonzero Jacobian means that g = p o f o ¢ is continuously differentiable
at the origin with nonzero Jacobian. Thus there is an A € S(n),

A= (po fop)(0)(pofop)(0)=g(0)d
such that
d(pg(z),A) -0 asz —0.

Now ug(z) = pre(z) = ¢'(z)[ps(e(z))] and since this right action (the right
GL(n,R) action on S(nr)) is isometric we see

@' (2)[us (p(2))), 4) = dus(p(2)), (¢'(2)) 7 [AD)) > 0 asz — 0.

Next an easy calculation reveals ¢'(z) is the conformal matrix Id —2Q(z),
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where Q(z) = (g;;(z)) and ¢;; = |z]7%(ziz;). Since z = p o p(z), Id =
©'(p(z))¢'(z) and so ©'(z)7" = ' (p(z)) — 1d as z — 0. Thus (p(z))~*[4]
— Aasz— 0.

Finally, if we set y = p(z) we see d(us(y), A) — 0 as y — oo, thus estab-
lishing the lemma. -

3.4 Definition. A quasiconformal homeomorphism f of R" is called
parabolic if f has a single fixed point and the group generated by f, {f) =
{f™: m € Z}, is infinite, discrete and quasiconformal. In this case

(3.5) fE™ — x4 locally uniformly in R" — {20} as m — oo,

where z¢ is the fixed point of f (see [4]). We set D({f)) as the D-dilatation of
the quasiconformal group (f}. If zg = oo, we call f a parabolic quasiconformal
homeomorphism of R”.

At present it is unknown whether in dimension three or more a parabolic
quasiconformal homeomorphism of R" is quasiconformally (or even topolog-
ically) conjugate to a euclidean isometry. This is true in dimension one and
two. There are examples of homeomorphisms of R™, n > 3, satisfying (3.5)
with zg = oo, which are not topologically conjugate to a euclidean isometry
(see [4]). These examples are not quasiconformal however and from our next
theorem cannot even be topologically conjugate to a quasiconformal homeo-
morphism which is differentiable or affine at infinity.

We need to recall Tukia’s generalization of the good approximation theorem
(see [17, Corollary DJ.).

Theorem (Good approzimation theorem). Let f;: U — R™ be a sequence
of K-quasiconformal embeddings. Suppose that f; — f for some embedding
f: U — R"™ and that p5, — p in measure for some measurable map p: U —
S(n). Then f i3 K-quasiconformal and py = p a.e. in U.

3.6 Theorem. Let f be a parabolic quasiconformal homeomorphism of
R™ which is affine at infinity. Then f is conjugate to a parabolic Mobius
transformation by a K -quasiconformal mapping for which

(3.7) K((MY* <K <= DE(H)TV.

Proof. Equation (3.5) implies that f£™ — oo as m — co. Choose simi-
larity maps B,, = am& + by, where a,, is real and b,, lies in R™, such that

f"0Bm(0)=0 and [f™ofn(e1)l =1,

where ¢; = (1,0,---,0) is one of the usual basis vectors of R®. Now since
the mapping f™ is K({f))-quasiconformal for all m and since every [,
is conformal, the sequence {f™ o B, } is a normalized sequence of K ({f})-
quasiconformal mappings, and so contains a uniformly convergent sub-
sequence {f™) o B (;)} converging to a K ({f}))-quasiconformal homeomor-
phism h of R™ as 7 — oo (see for instance [18]).
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We claim g = h~! o f o h generates a K ({f))-quasiconformal group of affine
transformations. To see this note that for all integers k

g* =htofFoh=Tmp ;) 0 fTD o fFo [0 fn)
= lim B}y © f* 0 Bm(j)

as j — 00, by the uniform convergence of the sequence f™() .o Bm(;)- Since
the B, are conformal and since f* is K({f))-quasiconformal, we find from
the right-hand side of the above equation that g generates a K ({f))-quasi-
conformal group.

We now need to show that g is in fact affine. To do this we will compute
its matrix dilatation and show that it is constant (note g(co) = o).

Let g; = ﬁ;tj) o f o Bm(s) so that

Mg, (z) = KfoBmi) (z) = /B;n(j) [l‘f(ﬂm(j)(x))]
= Uf (:Bm(j) (CII))
We now need to observe that
Brm(7(0) = f~™0)(0) > 00 and Bpgy(er) € FT™I (S 1) - 00

so that from the Carathéodory convergence theorem (see [8]) Bm(j) — o0
locally uniformly in R™. The assumption that f is affine at infinity now
implies that there is an A € S(n) such that

Bo;(z) = ps(Bmy)(z)) = A asj— oo

We now are in the situation that g; — g uniformly in R™ and the matrix
dilatations of the g; also converge uniformly to a matrix A € S(n). From
the good approximation theorem we conclude that u;, = A. That is, g has
constant matrix dilatation. Hence g is affine and so too therefore is the group
generated by g. '

Finally, to conclude the proof, we find from Theorem 2.2 that the affine,
uniformly quasiconformal group {g) is quasiconformally conjugate to a Mébius
group by a linear mapping B whose dilatation is no more than

V(n=1)K({g))/¥?. Thus,
B_loh—lofohoB

is Mébius, so that hoB is the desired (/(n — 1)K ({f))}*+1/v?)-quasiconformal
mapping conjugating f to a parabolic Mébius transformation and thereby
establishing the theorem.

‘We could simplify and improve the estimate on the dilatation of the conju-
gating map in the theorem if we knew that the limit of a sequence of quasicon-
formal mappings with D-dilatation bounded by M and converging uniformly
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to a homeomorphism was again quasiconformal with D-dilatation bounded
by M. Tukia has informed us that at present this is unknown.

Observe that we only need that the matrix dilatations of g; converge in
measure to A, as the good approximation theorem will still apply. However
it seems difficult to give an easy condition (other than the one we have) to
guarantee this.

3.8 Corollary. If f is a parabolic quasiconformal diffeomorphism of R",
then f is conjugate to a euclidean tsometry by a quasiconformal homeomor-
phism satisfying the dilatation estimate (3.7).

As a consequence of Corollary 3.8 a parabolic quasiconformal diffeomor-
phism of 8™ is quasiconformally conjugate to a Mobius transformation of S™.

3.9 Corollary. If f is a parabolic quasiconformal homeomorphism of R™
which is conformal at infinity, then f is conjugate to a euclidean isometry by
a K -quasiconformal mapping for which K((f))*/? < K < K((f)).

Proof. We observe that if f were conformal at infinity, then in the proof
of Theorem 3.7 where we established that g was affine (the matrix dilatation
of g was equal to A) we would have shown the matrix dilatation of g was the
identity and so g would already have been a euclidean isometry.

3.10 Definition. A quasiconformal homeomorphism f of R is called
lozodromic if f has exactly two distinct fixed points and the group (f) is
infinite, discrete and quasiconformal. In this case we may label the fixed
points zg and yg so that

™ — zo locally uniformly in R" - {yo},
f™™ —yo locally uniformly in  R" — {zo},

as m — 00. »

We call zg the attractive fixed point of f and yo the repulsive fixed point.

For the definition of approximate continuity (or continuity in measure) of
a measurable map we refer to [2]. It is worthwhile recalling that a measurable
map is approximately continuous almost everywhere.

It is known that for all n # 4, a loxodromic quasiconformal transformation
of R" is quasiconformally conjugate to a loxodromic Mébius transformation.
The conjugacy is known only to be topological when n = 4 (see [4]). These
facts require remarkably deep results in topology and analysis as we mentioned
in the introduction, namely the annulus theorem in all dimensions and the
quasiconformal Hauptvermutung for n # 4. Moreover, this approach yields no
bounds at all on the dilatation, so that for instance in a quasiconformal group
containing loxodromics with distinct conjugacy classes, one can say very little
about the structure of the elements. Thus we will now prove the following
theorem in an analogous fashion to Theorem 3.8.



QUASICONFORMAL AND AFFINE GROUPS 441

3.11 Theorem. Let f be a lozodromic quasiconformal transformation of
R" whose matriz dilatation is approzimately continuous at a fized point. Then
[ 18 congugate to a lozodromic Mdbius transformation by a K -quasiconformal
mapping for which

K({fMY? < K < /(n— DK({f)) V2,

Proof. In this case we may assume by conjugating f by a conformal map-
ping and replacing f with f~! if necessary, that 0 is the attractive fixed point
of f and oo is the repulsive fixed point and that the matrix dilatation of f is
approximately continuous at 0. Let 8,,(z) = amz, where the a,, are real and
positive and such that the sequence {f™ o (3,,} satisfies |f™ o B(e1)| = 1.
Since f™ o B,,(0) = 0, the sequence {f™ o B,,} is a normalized sequence
of K({f))-quasiconformal mappings of R™ from which we may extract a
uniformly convergent subsequence {f™() o Bm(j)} converging to a K((f))-
quasiconformal homeomorphism 2 of R™. Notice that B,y — oo locally
uniformly in R® — {0}. Let g = ho f o h~! and define

95 = Bm(jy 0 S o fo [T 0 Bty = Bmsy o fo By

By the uniform convergence of the sequence By, ;) o f ™) we see g; — g and
computing the matrix dilatations we find (since a,, — 00)

tg; (z) = ps(z/am) — ps(0) = 4;

this last limit exists in the sense of measures (that is, pointwise almost every-
where) by the assumption that us is approximately continuous at the origin
and since the a,, are just real scalars (as in Tukia’s argument {17, Theorem
G], we just need that the measure of the set where py¢(z/an,) and pus(0) differ
by more than é tends to zero as m — oo and this follows immediately from
the definition of approximate continuity). As in the parabolic case, the good
approximation theorem will now imply that @, = A almost everywhere. Thus
g generates a countable uniformly K({f))-quasiconformal group and has ma-
trix dilatation which is constant almost everywhere. This implies that g'is
affine, and since g(0) = 0, g is in fact linear. The proof now concludes exactly
as in the parabolic case, since the group (g) is an affine K({f))-quasiconformal
group.

It is worthwhile contrasting the assumptions of our two theorems above
with those of Tukia [17, Theorem G and H2|. In these results, Tukia assumes
that the measurable invariant conformal structure is approximately continu-
ous at a radial limit point or continuous at any limit point. Since loxodromic
fixed points are radial limit points and since parabolic fixed points are limit
points the result seems somewhat similar. However, there are both loxodromic
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and parabolic C* diffeomorphisms of the sphere which generate discrete qua-
siconformal groups and for which the invariant conformal structure given by
the above construction is not approximately continuous at the fixed points.
One would need to establish that the infinite family of matrix dilatations
of the powers of f were “approximately equicontinuous” so that the average
varied in an approximately continuous fashion to apply Tukia’s result.

From Lemma 3.3 and the above theorem we obtain (as for the parabolic
case above) the following

3.12 Corollary. Let [ be a lozodromic quasiconformal diffeomorphism
of R". Then [ is conjugate to a lozodromic Mobius transformation by a K-
quasiconformal homeomorphism for which

K({(fHY? <K <+/(n— DKV

3.13 Corollary. Let f be a loxodromic quasiconformal homeomorphism
of R™ which is conformal near a fized point. Then f is conjugate to a loz-
odromic Mdébius transformation by a K-quasiconformal homeomorphism for
which

K(MY? < K <K({f).

It is a rather nice fact, first observed by Freedman and Skora [3] (with a
slightly different formulation) that if G is a group of diffeomorphisms acting
on S™ which is properly discontinuous in the complement of a set £ and (each
element of G is) conformal in a neighborhood of E, then G is uniformly quasi-
conformal. In general F will be the limit set and there will be a neighborhood
of E in which every generator is conformal. This observation (which is not
difficult to establish) enabled them to construct their beautiful example of
which we will have more to say later.

We point out that in all of the above examples the conjugating map need
not be differentiable. Indeed it is quite easy to construct examples where the
conjugacy cannot be differentiable at a fixed point of the parabolic or loxo-
dromic quasiconformal mapping, for instance: let  be a smooth increasing
function on R which is identically equal to two in a neighborhood of 0 and
identically equal to three in a neighborhood of co. Then f(z) = r(|z|)z: R -
R’ is a loxodromic quasiconformal diffeomorphism of R° which is not conju-
gate to any Mobius transformation by any homeomorphism which is differen-
tiable in a neighborhood of both 0 and oc. ‘

In summary, we have shown that the infinite cyclic subgroups of a discrete
smooth, uniformly quasiconformal group are quasiconformally conjugate to
the appropriate Mobius transformations. We now turn to the general case
and the main theorem.
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4. Smooth, admissible quasiconformal groups

The concept of admissibility will be purely algebraic. To define it we will
need to recall some terminology.

4.1 Definition. Let G be an abstract group. If ¢ and h are elements of G
we define the commutator of g and h as

[9,h] =g h ™ gh.
If H is a subset of G we define the commutator of G and H as
[G,H]={{g,h]: g€ G and h € H}.

It is important to realize that [G, H] is just a subset of G and not a subgroup
even if H is a subgroup. The center of G, denoted Z{G), is the largest subset
of G such that [G,Z(G)] = {Id}. It is not difficult to see that Z(G) is a
subgroup of G and that, when G is abelian, Z(G) = G. We say that a
subgroup H of G is virtually central if the set (G, H] is finite.

4.2 Admissibility. An abstract group G is admissible if there is an infinite
cyclic subgroup which is virtually central.
"~ Henceforth, we will denote an abstract infinite cyclic subgroup by Z. The
condition of admissibility implies there is a Z in G for which [G, Z] is a finite
set. »

It will turn out that in fact if there are two or more elements of infinite order
in a smooth admissible quasiconformal group, then that group is conjugate
into the euclidean group. Thus we would like to see that there are many
admissible subgroups of the euclidean group E(n), besides the abelian groups.
We note that if H is a subgroup of E(n), then H x Z is an admissible subgroup
of E(n+1), where the action of H X Z is the obvious one given by a translation
in the (n + 1)th coordinate. To obtain a more general result we need some
notation. ;

If f is an element of E(n), then f can be written in the form

(4.3) f(z) = Az +a, where A is orthogonal and Aa = a.

Possibly a = 0. We say f is proper if A is periodic and a # 0. The Bieberbach
Theorems imply that the elements of a crystallographic group are proper.
The following gives a simple geometric characterization of some admissible
subgroups of E(n).

4.4 Theorem. Let G be a discrete subgroup of the euclidean group gen-
erated by go, 91, 92,.-. where

gi(.’E) = Ai.’E +a; and A’iai =a,

(possibly some a’s are equal to ‘zero). Suppose that go is proper and that for
alli=1,2,.--, Aj(ag) = ap. Then G is admissible.
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Proof. Since go is proper, there is an integer m such that Af*=Identity,
and since ag # 0, go has infinite order. It is now immediate that the infinite
cyclic subgroup (g§*(z) = = + mag) is central.

The hypotheses of Theorem 4.4 are quite restrictive for discrete subgroups
of E(2). However they are not so in higher dimensions, where the condition
asserts only that each generator preserve one specific direction so the fixed
point set of the orthogonal part of any element of G contains the line which
ag spans. Generically, this will mean the fixed point set contains a 2-plane in
which ag lies.

We have chosen to call the next result our main theorem. One should note
that the hypothesis of admissibility is used crucially in (4.7). Also in view
of the more precise resuits of Theorems 3.6 and 3.11 differentiability is not
strictly necessary, for instance one could just assume that every element was
affine at fixed points.

4.5 Theorem. Let G be a discrete, admissible group of quasiconformal
diffeomorphisms of R". Then G 1is conjugate to a Mobius group by a K-
quasiconformal homeomorphism for which

K(@)Y? < K </(n~ D)K(G)'TV/V2,

Proaf. Since G is admissible we may find an element f of G such that f
is of infinite order and (f) is virtually central. We thus define the finite set

F=1G,(Nl

Because G is a discrete quasiconformal group, f is either parabolic or loxo-
dromic and we may assume (by conjugating G with a Mébius transformation)
that f fixes infinity and that if f is loxodromic, then infinity is the repulsive
fixed point. If f is parabolic we proceed as in the proof of Theorem 3.6
to find conformal maps S, such that for some subsequence ;) we have
Bum(z) © f™) converging uniformly to a K(G)-quasiconformal mapping h.’
While if f is loxodromic we proceed as in the proof of Theorem 3.11 to find
such maps. As before A=! o f o h will be an affine mapping. Let g be an
arbitrary element of G. We will show that A~ ogo A is affine by showing that
it has constant matrix dilatation. Again, by the uniform convergence of the
sequence {Bp(;) o f™9)} we see

(4.6) gd=hlogoh= limﬁ;b) o f~m) o go fM™i)o Bm()-

Now as (f) is virtually central we see that for all j there is n; € F such that
the mapping

(47) f—m(j) ogo fm(J) = gon;.
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Since F is a finite collection of mappings, we may pass to another subsequence
which we will simply denote by {f™(¥)}, such that

f®ogo k) =gon
for some fixed # in the set F. From (4.6) we then find
g =h"logoh=1mpuy ogonoﬂ;%j)

is a K (G)-quasiconformal homeomorphism of R", since gon € G and since
the 8,,’s are conformal. Calculating the matrix dilatations of elements of this
sequence and using the fact that the matrix dilatation of ¢ o # is continuous
everywhere, and so in particular at infinity and at the origin, then applying
the good approximation theorem as we did in Theorems 3.6 and 3.11 we see,
as before, that
pg = lim pign (Bm k) (z)) = A € S(n)

(notice here we only need that g o 5 is affine at infinity). Thus ¢’ is a K(G)-
quasiconformal affine mapping. Since g was arbitrary, the group h='oGoh is
affine group which is K (G)-quasiconformal. It is then conjugate to a conformal
group via a linear mapping from the results of §2. The theorenr and the
estimate on the dilatation now follow as before. ,

We note that actually the dilatation of k& is no more than that of f, thus
the possibly better estimate K < \/(n = 1)K (f)K (G)'/V? is valid.

4.8 Corollary. Let G be a finitely generated infinite abelian, discrete
quasiconformal group of diffeomorphisms of S™. Then G is gquasiconformally
conjugate to a discrete Mobius group. Consequently the rank of G is at most
n.

This in particular implies that the example constructed by Scott and Tucker
of a Z acting effectively on euclidean 3-space not topologically conjugate to
a translation cannot be conjugate to a smooth quasiconformal action (see [4]
for other such examples.)

4.9 Corollary. Let G be an admissible discrete quasiconformal group of
diffeomorphisms of R". Then G is elementary.

Consequently if G has two or more independent elements of infinite order
(that is these elements of infinite order do not generate an infinite cyclic
subgroup), then G is quasiconformally conjugate to a subgroup of E(n) and
therefore has an abelian subgroup of finite indez.

Proof. Rewriting equation (4.7) we find

go fm) = fm@ o gon,,

where 7; lies in a finite set. We can assume that infinity is an attractive fixed
point if f is loxodromic (or otherwise consider f~!). This equation easily
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implies that g fixes infinity and hence, because ¢ is arbitrary, every element
of G fixes infinity (see Definitions 3.4 and 3.10). Since G stabilizes a point,
G is elementary (see [4]). The final statement follows from the classification
of elementary Mobius groups which stabilize infinity (if G has more than two
independent elements of infinite order then G is purely parabolic) and the
Bieberbach Theorems.

We now consider the hypotheses of Theorem 4.5 and give examples to show
that they are essentially all necessary. As we mentioned in the introduction,
the assumption that there is an element of infinite order in the group is nec-
essary, when n > 4, due to the existence of smooth counterexamples to the
generalized Smith conjecture. In dimension two this is unnecessary as two
dimensional quasiconformal groups are automatically quasiconformally con-
jugate to conformal groups. When n = 3, finite groups of diffeomorphisms
are known to be conjugate to conformal groups provided each element has a
fixed point (which then implies the fixed point set is an unknotted circle by
the affirmative solution to the Smith Conjecture; see [13]).

Freedman and Skora [3] have constructed a uniformly quasiconformal group
of diffeomorphisms of S% which is isomorphic to a finite extension of a free
group of large rank and which is not even topologically conjugate to a Mobius
group. Furthermore, they conjecture that the free part of their action is
also not topologically conjugate to a Mdbius group. This implies that some
general algebraic restriction is necessary. There are also examples in [4, I and
M) of uniformly quasiconformal groups isomorphic to the free product Z * Z,,
(here Z, is the finite abelian group of order p) acting on S”, n > 4, and
not topologically conjugate to Mébius groups. These groups are obtained by
using the quasiconformal versions of the Klein-Maskit combination theorems
of [11] to combine a “bad” elliptic element with a Mébius transformation.

We do not know if the hypothesis of admissibility in Theorem 4.5 can
be replaced by the hypothesis that G is virtually abelian (notice that these
two hypotheses are independent). It may be that this is not the case. It
seems possible that there is a smooth quasiconformal group containing an
exotic involution and isomorphic to the Dihedral group; we will pursue this
elsewhere. We point out that there is an example in [11] of a uniformly
quasiconformal group isomorphic to Z?~! (and so of course abelian), acting on
R™, which is not quasiconformally conjugate to a Mobius group. As remarked
in that paper, the group can be made to be smooth except at one point. It
cannot be made smooth at this last point by our results above. Furthermore,
as remarked in [12], the dilatation of this group can be assumed arbitrarily
close to one.
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Finally we observe that if G is a cocompact discrete quasiconformal group
isomorphic to a crystallographic group I', then G is topologically conjugate
(actually quasiconformally if n # 4) to I'. In view of Theorem 4.4 and this
remark, there is rather wide class of abstract euclidean groups for which a
smooth discrete quasiconformal group isomorphic to such a group is actually
conjugate into the euclidean group.

It is worth observing the following consequence of Theorem 4.5. Recall we
have just observed that bad elliptics can lie in some infinite discrete quasicon-
formal groups. However, we see

4.10 Proposition. Let o be a periodic diffeomorphism of S™ of period
p. If o is not topologically conjugate to an orthogonal transformation, then
there is no discrete smooth Z x Z,, action on S™ which contains o and s of
bounded distortion.

Actually, of course, a periodic diffeomorphism which is not conjugate to an
orthogonal transformation can lie inside no finitely generated infinite abelian
group of bounded distortion acting on S™. Finally, we restate our main the-
orem in terms of representations of abstract groups in Diff(S™), the group of
diffeomorphisms of S™.

4.11 Theorem. Let G be an abstract admissible group and ®: G —
Diff(S™) a discrete and faithful representation. Then ®(G) is topologically
conjugate by a homeomorphism of bounded distortion into a subgroup of
Méb(n) if and only if d(B(G)) is essentially bounded.
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